Preclinical Profile of ALG-125755, a GalNAc-siRNA Targeting HBV

Jin Hong, Ph.D.
Aligos Therapeutics, Inc.
Disclosures

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements other than statements of historical facts contained in this presentation, including statements regarding our future results of operations and financial position, business strategy, prospective drugs and drug candidates, the potential scope, progress, results and costs of developing our drug candidates or any other future drug candidates, the potential market size and size of the potential patient populations for our drug candidates, the timing and likelihood of success of obtaining drug approvals, ability to maintain existing, and establish new, strategic collaborations, licensing or other arrangements, plans and objectives of management for future operations, the scope of protection we are able to establish and maintain for intellectual property rights covering our drug candidates, and future results of anticipated drugs and drug candidates, and the impact of developments related to the COVID-19 pandemic and the ongoing conflict between Ukraine and Russia are forward-looking statements. These statements involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Because forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified and some of which are beyond our control, you should not rely on these forward-looking statements as predictions of future events. The events and circumstances reflected in our forward-looking statements may not be achieved or occur and actual results could differ materially from those projected in the forward-looking statements. Except as required by applicable law, we do not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise. For a further description of the risks and uncertainties that could cause actual results to differ from those anticipated in these forward-looking statements, as well as risks relating to the business of Aligos Therapeutics in general, see Aligos' Quarterly Report on Form 10-Q filed with the Securities and Exchange Commission on November 2, 2022, and its future periodic reports to be filed with the Securities and Exchange Commission. Except as required by law, Aligos Therapeutics undertakes no obligation to update any forward-looking statements to reflect new information, events or circumstances, or to reflect the occurrence of unanticipated events.

Except where otherwise indicated, the information contained in this presentation speaks as of the date hereof or as of the date at which such information is expressed to be stated, as applicable, and such information may express preliminary estimated, unaudited results which shall be subject to audit or other year-end adjustments and such audited or adjusted results may materially differ from those contained in this presentation.

This presentation concerns drug candidates, some of which are undergoing nonclinical studies and others of which are under clinical investigation, and all of which have not yet been approved for marketing by the U.S. Food and Drug Administration. These drug candidates are currently limited by federal law to investigational use, and no representation is made as to their safety or effectiveness for the purposes for which they are being investigated.
Therapeutic Approaches to CHB Functional Cure

Aligos is developing CAM-E ALG-000184, siRNA ALG-125755 and liver targeting PD-L1 inhibitor
ALG-125755 Structure and Target Sequence

Homology to >9700 HBV Clinical Isolates

<table>
<thead>
<tr>
<th>GalNac siRNA</th>
<th>Gt A</th>
<th>Gt B</th>
<th>Gt C</th>
<th>Gt D</th>
<th>Gt E</th>
<th>Gt F</th>
<th>Gt G</th>
<th>Gt H</th>
<th>Gt I</th>
<th>Gt J</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALG-125755</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Homology: 0 mismatch (95%) + 1 mismatch (5%)

ALG-125755 targets a very conserved HBV site and utilizes proprietary stabilization chemistries.
ALG-125755 targets an essential region that is present in HBsAg mRNA produced from cccDNA and integrated DNA.
The Antisense Strand of ALG-125755 Demonstrates Activity in an Ago-2 Biochemical Assay

Ago-2 with antisense strand of ALG-125755 cleaves complementary HBV RNA at expected location

Antisense Strand of ALG-125755

Target HBV RNA

18 nt

10 nt

Antisense Strand of ALG-125755

Ago2: - - + + + + + -

Non-Target RNA

Target RNA

nt

- 20

- 18
In Vitro Activity of ALG-125903: The Unconjugated Form of ALG-125755

HepG2.2.15

EC$_{50}$ = 17.48 pM; CC$_{50}$ >1000 pM

HBV Infected Primary Human Hepatocytes

EC$_{50}$ = 5.58 pM; CC$_{50}$ >1000 pM

Unconjugated version of ALG-125755 showed pM EC$_{50}$ values in HBV cell models
ALG-125755 Demonstrated Potent Antiviral Activities vs. HBV Clinical Isolates
ALG-125755 In Vivo Activity in the AAV-HBV Mouse Model

ALG-125755 incorporating proprietary chemistries showed significant improvement over parental siRNA.
ALG-125755: In Vivo MOA Analysis at the End of Study

AAV HBV: 42 days post single dose of 5 mg/kg

Liver HBV RNA by Northern

Liver HBsAg by ELISA

Serum HBsAg by ELISA

ALG-125755 MOA: reduction of serum HBsAg was due to cleavage of HBV RNA in liver through RNAi
ALG-125755 demonstrates a more sustained reduction in HBsAg vs. competitor siRNAs

VIR-2218*

- Mean Log_{10} IU/mL HBsAg Reduction Relative to Day 0

- PBS, SC, Q2W, Day 0-70
- VIR-2218, 3 mg/kg, SC, Q2W, Day 0-70

ALG-125755

- Mean Log_{10} IU/mL HBsAg Reduction Relative to Day 0

- Vehicle, 5 mL/kg, SC, Q2W, Day 0-70
- ALG-125755, 5 mg/kg, SC, Q2W, Day 0-70
ALG-125755: PK-PD Correlation in Mouse

- For siRNA, C_{avg} appears to be more relevant PK parameter for efficacious target.

- Only maximum HBsAg change from baseline was considered; sustained PD durability was not taken into consideration for the mouse PK/PD analysis.

- ALG-126144 is 3’ N-1 active metabolite.
ALG-125755: Single SC Dose PK at 5 mg/kg in Rat and Monkey

Rat

- Liver C_{max} 64.8 µg/g and $T_{1/2}$ 6.8 days

Monkey

- Liver C_{max} 38.4 µg/g and $T_{1/2}$ 26.4 days

ALG-125755 single SC injection in rat and monkey: high liver exposure and long liver half life
ALG-125755 showed no immune activation in cytokine release assays performed in PBMC from 8 donors.
ALG-125755 In Vitro Off Target Profile

- Experimentally investigated potential off targets identified by bioinformatics

<table>
<thead>
<tr>
<th>Human mRNA</th>
<th>0 MM</th>
<th>1 MM</th>
<th>2 MM</th>
<th>3 MM</th>
<th>4 MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALG-125755 hits</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer No.</th>
<th>HepG2.2.15 25 pM (96 hour)</th>
<th>HepG2.2.15 250 pM (96 hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene 1</td>
<td>1</td>
<td>0.53±0.015</td>
<td>1.41±1.10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.66±0.292</td>
<td>1.34±0.73</td>
</tr>
<tr>
<td>Gene 2</td>
<td>1</td>
<td>0.33±0.056</td>
<td>0.44±0.17</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.61±0.478</td>
<td>1.22±1.10</td>
</tr>
</tbody>
</table>

Note: The signals were normalized against control B2M gene expression.

- Unbiased RNAseq in HepG2.2.15 cell line: 10 nM, 1000x EC₅₀

Unconjugated ALG-125755 10 nM

No cellular pathway affected

1 off target confirmed by 2nd independent experiment and qPCR
ALG-125755 FIH-enabling GLP Tox Studies

• Negative in the in vitro Ames and MNT studies
• Negative in rat MNT up to 2000 mg/kg
• No apparent changes in hemodynamic, ECG or respiratory parameters in monkeys or neurobehavioral findings in rats or monkeys up to 100 mg/kg, the highest dose tested
• Well tolerated in rat and monkey 5-week/6 dose repeat-dose tox studies with weekly subcutaneous doses of 0 (vehicle), 10, 30, 100 mg/kg/dose
 – The highest dose tested was the no observed adverse effect level (NOAEL) in both species

<table>
<thead>
<tr>
<th></th>
<th>NOAEL (mg/kg/dose)</th>
<th>C<sub>max</sub> (µg/mL)</th>
<th>AUC<sub>0-24hr</sub> (µg.hr/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>100</td>
<td>36</td>
<td>223</td>
</tr>
<tr>
<td>Monkey</td>
<td>100</td>
<td>17.5</td>
<td>271</td>
</tr>
</tbody>
</table>

Favorable nonclinical toxicology profile for ALG-125755
1) Confirmed ALN-HBV is hepatotoxic, VIR-2218 is not
2) ALG-125755 showed no evidence of hepatotoxicity as manifested by human ALT elevation

ALG-125755: Further De-risked Preclinically in PXB Mice with Humanized Livers

- Vehicle
- 50 mg/kg ALG-755
- 48.3 mg/kg ALN-HBV
- 50 mg/kg VIR-2218
Short Interfering Nucleic Acid ALG-125755
Discovery and Advancement of a Differentiated siRNA

- siRNAs have demonstrated clinical validation in CHB infected patients

- We have designed our siRNA sequences using our proprietary technology and liver targeting conjugation to maximize in vitro and in vivo potency
 - Proprietary chemistries discovered to increase potency and stability/duration of action
 - Exclusive license to GalNAc technology applicable for liver targeting across oligo modalities

- Our siRNA approach may have safety, stability and potency advantages vs. competitor siRNAs

- Dosing in healthy volunteers was initiated in October 2022, dosing in CHB patients in December 2022

ALG-125755 is differentiated from potential competitors. HV and CHB patient dosing started Q4 2022
Acknowledgements

• Bioinformatics: Aneerban Bhattacharya, Antitsa Stoycheva
• Oligo Chemistry: Saul Martinez Montero, Vivek Rajwanshi, Tilani De Costa, John Cortez, Dana Cho
• Biology/Biochemistry: Hua Tan, Hyunsoon Kang, Vera Huang, Elen Rosler, Min Luo, Cheng Liu, David Cai
• PK: Kusum Gupta, Kha Le, Vikrant Gohil
• Tox: Sucheta Mukherjee, Dinah Misner
• Clinical: Megan Fitzgerald, Tse-I Lin

• Senior Leadership: Leonid Beigelman, Julian Symons, Dave Smith, Sushmita Chanda and Larry Blatt