Preclinical Evaluation of ALG-097558: A Novel, Orally Bioavailable Pan-Coronavirus 3CLpro Inhibitor for the Treatment of COVID-19

Andreas Jekle1*, Koen Vandyck2, Dirk Jochmans3, Rana Abdelnabi3, Dorothée Bardiot4, Sandro Boland4, Patrick Chaltin4,5, Laura Vangeel3, Sandra Chang1, Rishi Sharma1, Kusum Gupta1, Steven De Jonghe4, Kha Le1, Cheng Liu1, Antitsa Stoycheva1, Sarah K Stevens1, Suping Ren1, Ruchika Jaisinghani1, Arnaud Marchand4, Pierre Raboisson2, Vladimir Serebryany1, Jerome Deval1, Sushmita Chanda1, Lawrence M Blatt1, Leonid Beigelman1, Julian A Symons1, Johan Neyts3, and Tse-I Lin2

1Aligos Therapeutics Inc., South San Francisco, CA; 2Aligos Belgium BV, Leuven, Belgium, 3Rega Institute for Medical Research, KU Leuven, Belgium, 4Cistim Leuven, Belgium, 5Centre for Drug Design and Discovery (CD3), KU Leuven, Belgium. * contact email: ajekle@aligos.com
Disclosures

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements other than statements of historical facts contained in this presentation, including statements regarding our future results of operations and financial position, business strategy, prospective drugs and drug candidates, the potential scope, progress, results and costs of developing our drug candidates or any other future drug candidates, the potential market size and size of the potential patient populations for our drug candidates, the timing and likelihood of success of obtaining drug approvals, ability to maintain existing, and establish new, strategic collaborations, licensing or other arrangements, plans and objectives of management for future operations, the scope of protection we are able to establish and maintain for intellectual property rights covering our drug candidates, and future results of anticipated drugs and drug candidates, and the impact of developments related to the COVID-19 pandemic and the ongoing conflict between Ukraine and Russia are forward-looking statements. These statements involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Because forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified and some of which are beyond our control, you should not rely on these forward-looking statements as predictions of future events. The events and circumstances reflected in our forward-looking statements may not be achieved or occur and actual results could differ materially from those projected in the forward-looking statements. Except as required by applicable law, we do not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise. For a further description of the risks and uncertainties that could cause actual results to differ from those anticipated in these forward-looking statements, as well as risks relating to the business of Aligos Therapeutics in general, see Aligos’ Quarterly Report on Form 10-Q filed with the Securities and Exchange Commission on November 2, 2022, and its future periodic reports to be filed with the Securities and Exchange Commission. Except as required by law, Aligos Therapeutics undertakes no obligation to update any forward-looking statements to reflect new information, events or circumstances, or to reflect the occurrence of unanticipated events.

Except where otherwise indicated, the information contained in this presentation speaks as of the date hereof or as of the date at which such information is expressed to be stated, as applicable, and such information may express preliminary estimated, unaudited results which shall be subject to audit or other year-end adjustments and such audited or adjusted results may materially differ from those contained in this presentation.

This presentation concerns drug candidates, some of which are undergoing nonclinical studies and others of which are under clinical investigation, and all of which have not yet been approved for marketing by the U.S. Food and Drug Administration. These drug candidates are currently limited by federal law to investigational use, and no representation is made as to their safety or effectiveness for the purposes for which they are being investigated.
Overview of SARS-CoV-2 Antivirals

<table>
<thead>
<tr>
<th>Name</th>
<th>MoA</th>
<th>Approval</th>
<th>Route of Admin.</th>
<th>Pros/cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veklury (Remdesivir)</td>
<td>RdRp Inhibitor</td>
<td>FDA full</td>
<td>IV</td>
<td>IV; low risk of resistance</td>
</tr>
<tr>
<td>Bebtelovimab</td>
<td>Mab</td>
<td>FDA EUA</td>
<td>IV</td>
<td>IV, susceptible to mutations in spike protein</td>
</tr>
<tr>
<td>Evusheld (tixagevimab + cilgavimab)</td>
<td>Mab</td>
<td>FDA EUA</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Paxlovid (nirmaltrelvir + ritonavir)</td>
<td>Protease Inhibitor</td>
<td>FDA EUA</td>
<td>oral</td>
<td>Strong clinical efficacy; low risk of resistance; drug-drug interactions</td>
</tr>
<tr>
<td>Lagevrio (molnupiravir)</td>
<td>RdRp inhibitor</td>
<td>FDA EUA</td>
<td>oral</td>
<td>Low risk of resistance</td>
</tr>
</tbody>
</table>

- Activity of tixagevimab + cilgavimab reduced > 600-fold against most Omicron subvariants including BQ1, BQ1.1 ¹, ²
- Paxlovid reduced risk of death or hospitalization due to Covid-19 by 89% compared to placebo ³
- Protease and polymerase inhibitors provide high variant coverage
 - Very limited clinical resistance observed

Antivirals with 3 different MoAs available

1: Evusheld fact sheet: https://www.fda.gov/media/154701/download
2: Bebtelovimab fact sheet: https://www.fda.gov/media/156152/download
3: Hammond J NEJM 2022; DOI: 10.1056/NEJMoa2118542
Paxlovid Retains Clinical Efficacy Against Omicron Variants

3CLpro Inhibitors such as Nirmatrelvir Retain Activity Against Omicron Variants

EPIC-HR Phase 2/3 trial
- July-Dec 2021
- Largely Delta
- No/minimal preexisting immunity

Clalit health system (Israel), retrospective study
- Jan-March 2022
- >90% Omicron
- >78% with preexisting immunity (vaccine or infection)
Need for 2nd Generation Protease Inhibitors

- Ritonavir Drug-Drug Interactions are a major limitation of Paxlovid

Do not take PAXLOVID if:
- You are allergic to nirmatrelvir, ritonavir, or any of the ingredients in PAXLOVID.
- You are taking any of the following medicines:
 - alfuzosin
 - amiodarone
 - apalutamide
 - carbamazepine
 - colchicine
 - dihydroergotamine
 - dronedarone
 - eletriptan
 - eplerenone
 - ergotamine
 - finerenone
 - flecaïnide
 - flibanserin
 - ivabradine
 - Iomitapide
 - lovastatin
 - lumacaftor/ivacaftor
 - methylergonovine
 - midazolam (oral)
 - naloxegol
 - phenobarbital
 - phenytoin
 - pimozide
 - primidone
 - propafenone
 - quinidine
 - ranolazine
 - rifampin
 - St. John's Wort (hypericum perforatum)
 - sildenafil (Revatio®) for pulmonary arterial hypertension
 - simvastatin
 - tolvaptan
 - triazolam
 - ubrogepant
 - voclosporin

- University of Liverpool Drug Interaction website https://www.covid19-druginteractions.org/

Can NOT be co-administered with many immuno-suppressants, heart-failure/hypertension medications, anti-convulsants, lipid-lowering agents and others
Program Goals

- Collaboration established in 2020 between Aligos Therapeutics, CD3, Cistim and the Rega Institute at the KU Leuven

- Protease inhibitors clinically validated
 - HIV, HCV

- Key criteria
 - Orally bioavailable
 - Pan-coronavirus antiviral activity
 - Favorable resistance profile
 - No need for a pharmaco-enhancer such as ritonavir

ALG-097558
Antiviral Activity and Selectivity in Biochemical Assays

<table>
<thead>
<tr>
<th>Compound</th>
<th>SARS-CoV-2 3CLpro IC₅₀ (nM)</th>
<th>SARS-CoV-2 3CLpro Hill Slope</th>
<th>Cathepsin L IC₅₀ (nM)</th>
<th>HRV 3C Protease IC₅₀ (nM)</th>
<th>Cathepsin L IC₅₀ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALG-097558</td>
<td>0.26</td>
<td>1.99</td>
<td>0.074</td>
<td>> 10000</td>
<td>> 10000</td>
</tr>
<tr>
<td>Nirmatrelvir</td>
<td>2.92</td>
<td>0.91</td>
<td>2.03</td>
<td>> 10000</td>
<td>> 10000</td>
</tr>
<tr>
<td>PBI-0451</td>
<td>3.6</td>
<td>1.74</td>
<td>3.4</td>
<td>> 10000</td>
<td>1493</td>
</tr>
</tbody>
</table>

1 Low 3CLpro enzyme concentration (0.3 nM) was used to accurately determine the Ki of highly active 3CLpro inhibitors in a mass spectrometry-based assay

- ALG-097558 is a selective SARS-CoV-2 3CLpro inhibitor without off-target activity against human Cathepsin L and the Human Rhinovirus protease
- ALG-097558 exhibits reversible 3CLpro binding based on guanidine denaturation experiments (not shown)

ALG-097558 is a highly potent and selective inhibitor of the SARS-CoV-2 3CLpro
ALG-097558

Pan-Coronavirus Activity in Cellular Assays

<table>
<thead>
<tr>
<th>Virus</th>
<th>Variant</th>
<th>EC₅₀ (µM)</th>
<th>ALG-097558</th>
<th>Nirmatrelvir</th>
<th>PBI-0451</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALG-097558</td>
<td>Nirmatrelvir</td>
<td>PBI-0451</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>03021/2020¹</td>
<td>0.010</td>
<td>0.116</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.1.1.7 (alpha)²</td>
<td>0.012</td>
<td>0.099</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.1.617.2 (delta)²</td>
<td>0.013</td>
<td>0.217</td>
<td>0.126</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.1.1.529 (omicron)¹</td>
<td>0.008</td>
<td>0.059</td>
<td>0.136</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA.2¹</td>
<td>0.003</td>
<td>0.027</td>
<td>0.087</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA.5¹</td>
<td>0.012</td>
<td>0.075</td>
<td>0.215</td>
<td></td>
</tr>
<tr>
<td>SARS-CoV-1</td>
<td>Isolate Vietnam¹</td>
<td>0.022</td>
<td>0.173</td>
<td>0.323</td>
<td></td>
</tr>
<tr>
<td>β-hCoV</td>
<td>OC43³</td>
<td>0.009</td>
<td>0.047</td>
<td>0.168</td>
<td></td>
</tr>
<tr>
<td>α-hCoV</td>
<td>229E⁴</td>
<td>0.017</td>
<td>0.476</td>
<td>0.281</td>
<td></td>
</tr>
</tbody>
</table>

Cell lines used: (1) VeroE6 (in presence of 2 µM of P-glycoprotein inhibitor CP-100356), (2) A549-ACE2-TMPRSS2, (3) HeLa, (4) Huh-7; No cytotoxicity was detected for ALG-097558 at concentrations up to 100 µM.

- MERS testing pending; bioinformatics predicts retained activity BA.2.12.1, BA.3, BA.4, BQ.1, BQ1.1, BF.1
- Pan-coronavirus activity confirmed in FRET assay using 3CLpro derived from SARS-CoV-2, MERS, human α-CoV 229E and NL63, and human β-CoV HKU-1 (not shown)

ALG-097558 demonstrates pan-coronavirus activity in cell-based assays
Inhibition of SARS-CoV-2 Replication in 3D Human Airway Epithelium (HAE) Air-Liquid-Interphase (ALI) Cultures

- Human airway epithelial cells are cultured in a 3-dimensional cell culture model at the air-liquid interphase
- Infection with SARS-CoV-2 B.1.1.7 on apical side
- Test compounds are added on basolateral side
- Viral replication is assessed on day 4 post-infection via RT-qPCR
 - Allows determination of EC$_{90}$, EC$_{99}$ and EC$_{99.9}$, in presence/absence of 40% human serum
Inhibition of SARS-CoV-2 Replication in 3D Human Airway Epithelium (HAE) Air-Liquid-Interphase (ALI) Cultures

• Viral replication is assessed on day 4 post-infection via RT-qPCR, in the absence or presence of 40% human serum

ALG-097558 EC\textsubscript{99.9} of 5.3 and 54 nM, in the absence or presence of 40% human serum, respectively
Confidential

ALG-097558
Preliminary Resistance Characterization

- Resistance selection using SARS-CoV-2 B.1.1.7 ongoing; preliminary findings, to be confirmed:
 - Only slow increases in drug pressure possible, suggesting high barrier to resistance
 - Increase in drug pressure at slower pace than other 3CLpro inhibitors (e.g., nirmatrelvir)
 - Further increase in ALG-097558 concentration resulted in suppression of viral replication

- ALG-097558 retains antiviral activity against known resistance mutations in enzymatic assay
 - L50F/E166A/L167F mutant demonstrates high replication fitness and transmissibility in hamster model
 - Assessment of additional mutants ongoing
 - Confirmed with recombinant mutant viruses in cell-based experiments

<table>
<thead>
<tr>
<th>Compound</th>
<th>Biochemical Potency Fold IC$_{50}$ Compared to Wild-type (Resistance)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L50F/E166A/L167F</td>
</tr>
<tr>
<td>ALG-097558</td>
<td>3 (n=3)</td>
</tr>
<tr>
<td>Nirmatrelvir</td>
<td>66 (n=6)</td>
</tr>
<tr>
<td>PBI-0451</td>
<td>> 65 (n=2)</td>
</tr>
</tbody>
</table>

- L50F/E166A/L167F mutant demonstrates high replication fitness and transmissibility in hamster model
- Assessment of additional mutants ongoing
- Confirmed with recombinant mutant viruses in cell-based experiments

ALG-097558 has a favorable activity profile against selected resistance mutants

1 Abdelnabi R 2022 doi: https://doi.org/10.1101/2022.09.28.509903
Favorable ADME Profile Allowing Advancement to Clinical Development

Low Stability in Hamster and Mouse (but NOT Other Species) Requires RTV-Boosting in Efficacy Studies
ALG-097558
SARS-CoV-2 Hamster Model: Efficacy After Prophylactic Dosing

- Intranasal infection with SARS-CoV-2 B.1.617.2 delta (1x 10^4 TCID_{50})
- Compounds dosed orally, BID for 3 days
 - Treatment start immediately before infection
 - Nirmatrelvir as positive control
- Five animals/group
- Lungs tested on day 4 for viral RNA and infectious virus
- Significant decrease in lung infectious titer
 - At LLOQ in nearly all animals
 - Confirmed with lung viral RNA read-out (not shown)

Significant reduction in lung viral RNA loads and infectious virus titers after oral treatment with ALG-097558

RTV administered 1 h before ALG-097431, RTV and ALG-097431 formulated as a solution in 43% Ethanol + 27% PG in water.
In a therapeutic setting, low doses of ALG-097558 significantly reduced lung viral RNA and infectious titer

- ~5 log\(_{10}\) vRNA reduction with 8h p.i. dosing start
- At limit of quantification for vRNA and infectious titer with 8h p.i. dosing start
- Significant reductions in vRNA and infectious titer at 24 h p.i.
- Dosing initiation as late as 24h post-infection improves body weight loss due to infection (not shown)

Significant reduction in lung vRNA and infectious virus titers after therapeutic treatment with ALG-097558
Projecting Efficacious Human Dose Projection

- C_{min} targeted as 5x of serum-shifted EC$_{90}$ or serum-shifted EC$_{99.9}$ in the *in vitro* HAE ALI assays
- Methods validated based on comparable clearance and volume of distribution predicted by these methods vs. the parameters derived from reported human PK for nirmatrelvir

Projected efficacious human dose 370 to 600 mg BID without need for ritonavir

1 Owen DR et al., Science 374:6575:1586-93
Summary and Outlook

- Pan-coronavirus inhibitor, nanomolar antiviral activity in biochemical and cellular assays
- Efficient inhibition of viral replication in human airway epithelium ALI cultures with EC\textsubscript{99.9} of 5.3 and 54 nM, respectively, with or without 40% human serum
- Efficient reduction of viral replication in the SARS-CoV-2 hamster model using low, oral doses and a therapeutic dosing regimen
- Favorable, preliminary resistance profile
- Favorable ADME profile indicates a 370-600 mg BID dosing regimen in humans without the need of ritonavir boosting
- IND enabling non-clinical studies in progress
- First-in-human clinical trials expected to start in first half of 2023

Thank you!