SAFETY, PHARMACOKINETICS, AND PHARMACODYNAMICS OF MULTIPLE ASCENDING ORAL DOSES OF ALG-055009, A THYROID HORMONE RECEPTOR BETA AGONIST, IN HYPERLIPIDEMIC SUBJECTS

INTRODUCTION

• Thyroid hormone receptor-beta (THR-β) is the primary THR expressed in liver and plays an important role in lipid metabolism.
• Therapeutics targeting THR-β represent a promising approach to treating patients with fatty liver by decreasing hepatic fat content and improving liver histology.

ALG-055009 is a THR-β agonist that in preclinical models had:
- High selectivity for THR-β and nanomolar potency,
- High efficacy in diet-induced obese rat and mouse models,
- A favorable pharmacokinetic (PK) profile with low plasma clearance, metabolic stability, high oral bioavailability and a long plasma half-life.

AIM

• To evaluate the safety, PK, and pharmacodynamics (PD) of ALG-055009 in healthy volunteers (HV) and in subjects with mild hyperlipidemia.

MATERIALS AND METHODS

ALG-055009-301 is a multi-part, double blind, randomized, placebo controlled first-in-human study (NCT05090111).

• Part 1 evaluated single ascending oral doses of ALG-055009 up to 4 mg in HV, the data from which were previously reported.
• Part 2 evaluated multiple ascending doses in four cohorts of subjects with mild hyperlipidemia.
 - Each cohort was comprised of 10 subjects randomized to placebo (N=2) or fasting state while receiving a standardized diet. Subjects were followed for 2 weeks after the last dose.
 - Key Inclusion Criteria:
 - Low Density Lipoprotein (LDL) >110 mg/dL
 - Key Exclusion Criteria:
 - TSH (thyrotropin) and Free Thyroxine (T4) > ULN
 - Throughout the study, safety assessments, treatment emergent adverse events (TEAEs), vital signs, electrocardiogram (ECG) and laboratories, PK, and PD markers (including Sex Hormone Binding Globulin [SHBG] and lipids) were collected.
 - Plasma concentrations of ALG-055009 were quantified by validated liquid chromatography-tandem mass spectrometry.
 - Here we report data from all Part 2 cohorts.

BASELINE CHARACTERISTICS

The baseline characteristics were generally similar across cohorts.

Table 1: Demographics and Baseline Characteristics

<table>
<thead>
<tr>
<th>ALG-055009 Dose</th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>0.6 mg</th>
<th>0.8 mg</th>
<th>1 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Age (years, mean (SEM))</td>
<td>41.3 (4.1)</td>
<td>39.4 (4.1)</td>
<td>41.4 (4.1)</td>
<td>33.4 (4.9)</td>
<td></td>
</tr>
<tr>
<td>Male, N(%)</td>
<td>8 (100%)</td>
<td>7 (87.5%)</td>
<td>6 (75%)</td>
<td>8 (100%)</td>
<td>7 (87.5%)</td>
</tr>
<tr>
<td>Non-Hispanic, N(%)</td>
<td>8 (100%)</td>
<td>8 (100%)</td>
<td>8 (100%)</td>
<td>8 (100%)</td>
<td>8 (100%)</td>
</tr>
<tr>
<td>BMI, kg/m², mean (SEM)</td>
<td>25.6 (3.6)</td>
<td>28.1 (0.8)</td>
<td>28.4 (1.3)</td>
<td>27.6 (1.1)</td>
<td>24.7 (1.4)</td>
</tr>
<tr>
<td>LDL, mg/dL, mean (SEM)</td>
<td>147.0 (13.9)</td>
<td>147.1 (13.0)</td>
<td>195.0 (5.0)</td>
<td>142.0 (5.8)</td>
<td>125.9 (4.8)</td>
</tr>
</tbody>
</table>

• An inconsistent or no dose response effect was observed for Cholesterol, HDL-c, non-HDL-c, Apolipoprotein-A1 and Lipoprotein-A1.

SAFETY

Administration of ≤1 mg ALG-055009 for 14 days was well tolerated.

• There were no serious adverse events, dose-limiting toxicities, or TEAEs leading to premature discontinuation.
• All TEAEs were mild (Grade 1) or moderate (Grade 2) in severity.
• The most common TEAEs (≥2 subjects) were:
 - Insomnia (N=2; 0.3 mg)
 - Headache (N=4; N=1 PBO, N=1 0.5 mg, N=2 0.6 mg)
 - Abdominal distension (N=4; N=1 PBO; N=1 0.5 mg, N=2 0.6 mg)
 - Diarrhea (N=2; N=1 0.8 mg, N=1 1 mg)
 - No evidence of clinical hypo- or hyperthyroidism was observed.
 - No clinically concerning laboratory, ECG, vital sign or physical examination findings were reported.

PHARMACODYNAMICS: Anti-Lipid-Effects

- A generally dose related decline in LDL-c, Triglycerides and Apo-Lipoprotein B was observed. Maximum decline occurred at Day 14 (Fig 1).

Fig 1: Mean (±SEM) % change from Baseline in Lipids

PHARMACODYNAMICS: Thyroid Hormones

• Thyroid hormones levels transiently declined in a generally dose responsive manner, then returned to (near) baseline within 2 weeks (Fig 2).
• ALG-055009 doses ≤0.6 mg: maximum mean declines were ~10-20%, with mean values of all thyroid hormones remaining in the normal range.
• ALG-055009 1 mg dose level: maximum mean declines in TSH, Total/Freet4, Total T3 and Free T3 were 47%, 43%, 33% and 29%, respectively. The mean values of TSH and free T3 remained within the normal range throughout dosing, while mean values of Total/Freet4 and Total T3 were outside of the normal range between Day 7-15.

PHARMACOKINETICS

• Plasma ALG-055009 exposures increased in a dose proportional manner with low variability (geometric CV ≤ 30%) (Fig 3).
• Steady state concentrations were achieved by Day 5 with an accumulation ratio of ~2-fold, consistent with single dose PK (Fig 3).

Fig 3: Mean (+SD) Plasma ALG-055009 Concentrations at Steady State (Day 14)

Table 2: Plasma ALG-055009 PK Parameters at Steady State (Day 14)

<table>
<thead>
<tr>
<th>Dose (mg)</th>
<th>N</th>
<th>Cmax (ng/mL)</th>
<th>AUClast (ng.hour/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>8</td>
<td>5.03 (16.4)</td>
<td>1835 (16.0)</td>
</tr>
<tr>
<td>0.5</td>
<td>8</td>
<td>12.8 (26.8)</td>
<td>4232 (25.0)</td>
</tr>
<tr>
<td>0.6</td>
<td>8</td>
<td>10.8 (35.0)</td>
<td>3853 (27.2)</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>25.3 (21.3)</td>
<td>9232 (20.1)</td>
</tr>
</tbody>
</table>

CONCLUSIONS

• Multiple ascending oral doses of ALG-055009 up to 1 mg x 14 days were well tolerated in subjects with hyperlipidemia.
• ALG-055009 showed favorable PK with dose-proportional increases in exposure and low variability following repeat doses.
• Favorable safety and anti-lipid effects were observed at doses ≤0.6 mg. These data support further evaluation in longer studies.

ACKNOWLEDGMENTS

The authors wish to thank the subjects participating in this clinical study. The Sponsor is grateful to the staff at Biotrial. The authors also wish to thank Aligos internal team members Chris Burnett and Genevieve Harrington for their assistance.

REFERENCES

4. Gupta K et al. AASLD 2020 Publication Number 1656
5. Deval J et al. AASLD 2019 Abstract 2149
6. Gupta K et al. AASLD 2021. Abstract # 1932
7. Chari H et al. EASL 2022 Abstract SAT-145

CONTACT INFORMATION

Benedetta Massetto (bmassetto@aligos.com)

The authors also wish to thank Aligos internal team members Chris Burnett and Genevieve Harrington for their assistance.

CONTACT INFORMATION

Benedetta Massetto (bmassetto@aligos.com)