Combination Approaches Towards a Functional Cure for Chronic Hepatitis B

Lawrence M. Blatt, PhD
Founder, CEO and Chairman
HEP DART December 7th, 2021
Disclosures
Lawrence M. Blatt is an employee and stockholder of Aligos Therapeutics, Inc.

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements other than statements of historical facts contained in this presentation, including statements regarding our future results of operations and financial position, business strategy, prospective drugs and drug candidates, the potential scope, progress, results and costs of developing our drug candidates or any other future drug candidates, the potential market size and size of the potential patient populations for our drug candidates, the timing and likelihood of success of obtaining drug approvals, ability to maintain existing, and establish new, strategic collaborations, licensing or other arrangements, plans and objectives of management for future operations, the scope of protection we are able to establish and maintain for intellectual property rights covering our drug candidates, and future results of anticipated drugs and drug candidates, and the impact of developments related to the COVID-19 pandemic are forward-looking statements. These statements involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. Because forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified and some of which are beyond our control, you should not rely on these forward-looking statements as predictions of future events. The events and circumstances reflected in our forward-looking statements may not be achieved or occur and actual results could differ materially from those projected in the forward-looking statements. Except as required by applicable law, we do not plan to publicly update or revise any forward-looking statements contained herein, whether as a result of any new information, future events, changed circumstances or otherwise. For a further description of the risks and uncertainties that could cause actual results to differ from those anticipated in these forward-looking statements, as well as risks relating to the business of Aligos Therapeutics in general, see Aligos’ Quarterly Report on Form 10-Q filed with the Securities and Exchange Commission on November 4, 2021, and its future periodic reports to be filed with the Securities and Exchange Commission. Except as required by law, Aligos Therapeutics undertakes no obligation to update any forward-looking statements to reflect new information, events or circumstances, or to reflect the occurrence of unanticipated events.

Except where otherwise indicated, the information contained in this presentation speaks as of the date hereof or as of the date at which such information is expressed to be stated, as applicable, and such information may express preliminary estimated, unaudited results which shall be subject to audit or other year-end adjustments and such audited or adjusted results may materially differ from those contained in this presentation.

This presentation concerns drug candidates, some of which are undergoing nonclinical studies and others of which are under clinical investigation, and all of which have not yet been approved for marketing by the U.S. Food and Drug Administration. These drug candidates are currently limited by federal law to investigational use, and no representation is made as to their safety or effectiveness for the purposes for which they are being investigated.
Therapeutic Approaches to CHB Functional Cure

- **Lower Antigen Burden**
- **Inhibit Viral Replication**
- **Boost Immune Response**
Therapeutic Approaches to CHB Functional Cure

Lower Antigen Burden

- **STOPS (ALG-010133)**
 - Phase 1b clinical trial ongoing in CHB patients
 - Topline data from Cohorts 1-3 anticipated in H1 2022

- **ASO (ALG-020572)**
 - Phase 1a clinical trial ongoing in healthy volunteers
 - Anticipate dosing in CHB patients in Q1 2022

- **siRNA (ALG-125755)**
 - On track to advance into the clinic in 2022

Inhibit Viral Replication

- **Class-II CAM (ALG-000184)**
 - Phase 1b clinical trial ongoing, currently dosing in 10 mg cohort
 - In HBeAg negative subjects at 50 and 100 mg QD over 28-days
 - HBV DNA <LLOQ in ≥75% of subjects
 - HBV RNA <LLOQ in 100% of subjects
 - In HBeAg positive subjects at 100 mg QD over 28-days
 - >4-log₁₀ drop in HBV DNA (IU/mL)
 - >3-log₁₀ drop in HBV RNA (copies/mL)

Boost Immune Response

- **PD-L1 Small Molecule**
 - Multiple novel series discovered
 - Biochemical and cell-based potency established

- **Peg-IFN (SOC)**
 - Readily available

- **Class-I CAM**
 - Multiple novel non-HAP series discovered

- **Nucleos(t)ides (SOC)**
 - Readily available

Aligos is poised to begin Phase 2 explorations of fully owned combinations to enable functional cure.
Lowering Antigen Burden

- ALG-010133 (STOPSTM)
- ALG-020572 (ASO)
- ALG-125755 (siRNA)
ALG-010133*
Lead STOPS Molecule

Significantly greater potency** vs. reference Poly-AC oligonucleotide***

![Dose-response curves](image)

**Hong et. al., AASLD (2019), poster #0689.
***ALG-010004 has an identical oligonucleotide sequence as REP 2139. A. Vaillant, Antiviral Research 133 (2016) 32.

Proprietary chemistry, extensive structure activity relationship (SAR) effort identified STOPS
~100-fold improvement in potency vs. NAPs
Enables subcutaneous administration, may widen therapeutic index
ALG-010133 Phase 1 Study in HV

Study Design

Single/Multiple Ascending Dose (SAD/MAD) study in HV

N=72; n=8 per Cohort, n=6 ALG-010133, n=2 Placebo

Single (SAD) or three weekly subcutaneous (SC) doses (MAD)

- **SAD**
 - Follow-up
 - Safety and PK of single doses of 20, 50, 75, 125, 160 and 200* mg

- **MAD**
 - Follow-up
 - Safety and PK of 3 doses of 120 and 180 mg

Dosing in HV complete
ALG-010133 Phase 1 Study in HV

PK Data

Doses ≥125 mg approach linearity; low-to-moderate intersubject variability; no accumulation

Doses ≥120 mg anticipated to have antiviral activity

*All doses used 100 mg/mL solution except 2nd 200 mg cohort, which used 200 mg/mL solution.

Gane et al., EASL 2021.
ALG-010133 Phase 1 Study in HV

Safety

• No serious adverse events (SAEs)

• Treatment emergent adverse events (TEAEs)
 – No TEAEs led to study drug discontinuation
 – Injection site reactions (ISRs)
 › Occurred in ~19% of ALG-010133-treated subjects
 • Similar to ISR rate for other oligonucleotides (ASO, siRNA, etc.)*
 › Generally characterized by localized erythema that was mild to moderate in severity and resolved over time. One SAD ISR was considered severe based on surface area criteria (>100 cm²)

• No clinically concerning laboratory, ECG, vital sign or physical examination findings

Single, multiple ALG-010133 doses generally well tolerated in HV
Prophylactic topical steroids are being used in CHB subjects to potentially mitigate ISRs

Gane et. al., EASL 2021.
*Van Meer et al., BJCP, 2016.
ALG-010133
Phase 1b Study in CHB Subjects

Multiple Doses in CHB Subjects
NA Suppressed (DNA < LLOQ), HBeAg neg or pos, HBsAg >100 IU/mL
Up to 6 cohorts (n=10 per Cohort; n=8 ALG-010133, n=2 Placebo)
Up to 12 weekly SC doses
Endpoints: PK, safety, antiviral activity (e.g., HBsAg)

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Endpoint data collected throughout, including</th>
<th>Week 12</th>
<th>Week 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=8</td>
<td>ALG-010133 + NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>N=2</td>
<td>Placebo + NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

1st (120 mg) and 2nd (200 mg) cohorts fully enrolled; 3rd cohort (400 mg) enrolling, dosing
Dose range finding study: target mean HBsAg reduction ≥1 log\textsubscript{10} IU/mL (similar to REP 102 at Week 10)
Antisense Oligonucleotides and Small-Interfering RNAs

RNA interference (RNAi)

- Synthetic siRNA
- Strand Separation
- Complementary Pairing
- Cleavage
- mRNA Degradation

Antisense oligonucleotides (ASOs)

- mRNA-Antisense Duplex
- RNase H1 Recognizes Duplex
- RNase H1 Enzyme Cleaves mRNA

Aligos is agnostic to oligonucleotide modality

*PS = Phosphorothioate

Dose dependent activity of ALG-020572 correlates with liver exposure

*ALG-020579 is the unconjugated form of ALG-020572 following GalNAc cleavage.

Gupta et al., AASLD 2021.
ALG-020572 demonstrates significantly improved efficacy in vivo vs. a competitor ASO.
ALG-020572
Phase 1a/b Clinical Trial Design

Part 1: SAD (HV)
Multiple Cohorts
Each Cohort - 6 Active: 2 Placebo

Part 2: VS CHB patients
Multiple Cohorts
Each Cohort - 6 Active: 2 Placebo

<table>
<thead>
<tr>
<th>Day</th>
<th>Loading Doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>

Trial is ongoing – currently dosing in Healthy Volunteers
Phase 1 target mean HBsAg reduction: ≥1 log_{10} IU/mL
ALG-125755 demonstrates significantly improved efficacy in vivo vs. a competitor siRNA
The combination of our siRNA and ASO delivers rapid, potent and durable suppression of HBsAg in vivo
Inhibiting Viral Replication

- ALG-000184 (Class-II CAM)
- ALG-005398 (Class-I CAM)
ALG-000184

Phase 1 Study in CHB Subjects

Multiple Doses in Currently Not Treated/Treatment Naïve CHB Subjects

- HBV DNA > 2000 IU/mL, HBeAg Negative or Positive
- Up to 6 cohorts (n=10 per Cohort, n=8 ALG-000184, n=2 Placebo)
- 28 daily oral doses
- Endpoints: PK, safety, antiviral activity (e.g., DNA, RNA)

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Group</th>
<th>Endpoint data collected throughout, including</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Baseline, Week 4, Week 12</td>
</tr>
<tr>
<td>N=8</td>
<td>ALG-000184</td>
<td>No treatment</td>
</tr>
<tr>
<td>N=2</td>
<td>Placebo</td>
<td>No treatment</td>
</tr>
</tbody>
</table>

Complete 28-day data available in Cohorts 1 (100 mg in HBeAg-), 2 (50 mg in HBeAg-), and 4 (100 mg in HBeAg+).
Baseline Demographics and Disease Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Cohort 1 HBeAg Neg (100 mg/placebo)</th>
<th>Cohort 2 HBeAg Neg (50 mg/placebo)</th>
<th>Cohort 4 HBeAg Pos (100 mg/placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Age*, years</td>
<td>44.7 (2.9)</td>
<td>42.7 (2.8)</td>
<td>30.2 (2.4)</td>
</tr>
<tr>
<td>% Male</td>
<td>60</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>% Asian</td>
<td>10</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>BMI*, Kg/m²</td>
<td>26.7 (1.8)</td>
<td>24.3 (1.7)</td>
<td>21.8 (1.0)</td>
</tr>
<tr>
<td>ALT* IU/L</td>
<td>31 (8)</td>
<td>27 (5)</td>
<td>35 (6)</td>
</tr>
<tr>
<td>HBV DNA* (log₁₀ IU/mL),</td>
<td>4.2 (0.3)</td>
<td>4.7 (0.4)</td>
<td>8.1 (0.3)</td>
</tr>
<tr>
<td>HBsAg* (log₁₀ IU/mL),</td>
<td>3.4 (0.2)</td>
<td>3.0 (0.2)</td>
<td>4.5 (0.1)</td>
</tr>
<tr>
<td>Genotype A/B/C/D (N)</td>
<td>1/1/0/8</td>
<td>1/6/1/2</td>
<td>0/3/6/0**</td>
</tr>
</tbody>
</table>

*Mean (SEM). **1 unknown.
ALG-000184
Safety in CHB Subjects (Cohorts 1, 2 and 4)

- Serious adverse events: 1 (unrelated)
 - Subject with a history of sciatica experienced mild back pain resulting in brief hospitalization for pain management

- TEAEs
 - Leading to discontinuation: none
 - Generally mild or moderate, except three Grade 3 ALT elevations, all of which had onset post dosing and were not assessed as drug toxicity by the study ALT Flare Committee

- No concerning laboratories, EKGs, or vital signs

100, 50 mg ALG-000184 x 28 days was well tolerated in CHB subjects regardless of HBeAg status
PK profile in CHB comparable to HVs: linear, with minimal accumulation following oral daily dosing
ALG-000184
Day 28 Antiviral Activity* in CHB Subjects (Cohorts 1, 2 and 4)

50-100 mg ALG-000184 lowers HBV DNA by ~3-4 log10 IU/mL, RNA by ~1.5-3 log10 copies/mL
≥75% of HBeAg negative subjects’ DNA, RNA <LLOQ

*Roche COBAS HBV DNA ASSAY (LLOQ = 10 IU/mL).
Cohorts 1 and 2: Gane et. al., AASLD 2021.
Class-I Capsid Assembly Modulators

- Class I capsid assembly modulators are orally bioavailable small molecules that decrease HBsAg in the AAV-HBV mouse model

- Publicly disclosed Class-I CAMs are in the heteroaryl pyrimidine (HAP) class
 - GLS4 and RG7907 are two clinically reported entries with this structural motif
 - HAPs have several potential drawbacks related to safety
 - HBc dependent cell death of infected hepatocytes in vitro
 - ALT flare in animal models in vivo

- Aligos has discovered and optimized multiple non-HAP class-I CAM series
 - Proof of concept in HBV AAV animal model with ALG-005398
 - Significant reductions in HBV DNA, HBeAg and HBsAg without observation of ALT increases
ALG-005398
Proof of Concept in the AAV-HBV Mouse Model

- ALG-005398 potency in HepG2.117 cells
 - Reduction in HBV DNA
 - EC$_{50}$ = 3.4 nM
 - EC$_{90}$ = 10.6 nM

- Demonstration of class-I CAM properties
 - Formation of large aberrant capsids

ALG-005398 is a potent, non-HAP class-I CAM that reduces HBsAg and other antigens in vivo.
Boosting the Immune Response

- ALG-093453 (PD-L1 SM)
PD-L1 Small Molecule

• Exhaustion of HBV specific T-cells contributes to the persistence of CHB

• Proof of concept in CHB with anti-PD1 antibodies has been established
 – Multiple clinical studies have demonstrated quantitative reductions in HBsAg in CHB infected patients

• Aligos has discovered several potent series of small molecule PD-L1 inhibitors

• ALG-093453 is a novel small molecule PD-L1 inhibitor
 – Biochemical and cell-based potency established
ALG-093453

PD-L1 Small Molecule

Biochemical Potency

<table>
<thead>
<tr>
<th></th>
<th>Nivolumab</th>
<th>INCB86550</th>
<th>ALG-093453</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD-1/PD-L1 IC50 (nM)</td>
<td>0.16</td>
<td>0.011</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Cellular Activity

<table>
<thead>
<tr>
<th></th>
<th>Nivolumab</th>
<th>INCB86550</th>
<th>ALG-093453</th>
</tr>
</thead>
<tbody>
<tr>
<td>T cell activation EC50 (nM) (Emax % to PDL1 Abs)</td>
<td>3.5 (125)</td>
<td>8.6 (115)</td>
<td>1.5 (143)</td>
</tr>
</tbody>
</table>

HBV Positive Donor

ALG-093453 activates HBV specific T cells with low nM potency similar to nivolumab and durvalumab
Therapeutic Approaches to CHB Functional Cure

Lower Antigen Burden

- **STOPs (ALG-010133)**
 - Phase 1b clinical trial ongoing in CHB patients
 - Topline data from Cohorts 1-3 anticipated in H1 2022

- **ASO (ALG-020572)**
 - Phase 1a clinical trial ongoing in healthy volunteers
 - Anticipate dosing in CHB patients in Q1 2022

- **siRNA (ALG-125755)**
 - On track to advance into the clinic in 2022

Inhibit Viral Replication

- **Class-II CAM (ALG-000184)**
 - Phase 1b clinical trial ongoing, currently dosing in 10 mg cohort
 - In HBeAg negative subjects at 50 and 100 mg QD over 28-days
 - HBV DNA < LLOQ in ≥75% of subjects
 - HBV RNA < LLOQ in 100% of subjects
 - In HBeAg positive subjects at 100 mg QD over 28-days
 - >4-log10 drop in HBV DNA (IU/mL)
 - >3-log10 drop in HBV RNA (copies/mL)

- **Class-I CAM**
 - Multiple novel non-HAP series discovered
 - On track to advance into the clinic in 2022

- **Peg-IFN (SOC)**
 - Readily available

Boost Immune Response

- **PD-L1 Small Molecule**
 - Multiple novel series discovered
 - Biochemical and cell-based potency established

- **Nucleos(t)ides (SOC)**
 - Readily available

Aligos is poised to begin Phase 2 explorations of fully owned combinations to enable functional cure.
Acknowledgements

Thanks to the entire Aligos and Emory team!