Development of a Best-in-Class HBV ASO, ALG-020572, for the Treatment of Chronic Hepatitis B

- Potential for Combination with other Anti-HBV Agents
Jin Hong, Ph.D.

Senior Director, Oligonucleotide Biology
Aligos Therapeutics, Inc.
1 Corporate Drive
South San Francisco, CA
Disclosure

Jin Hong
I disclose the following financial relationship(s) with a commercial interest:
• Aligos Therapeutics, Inc.
Our CHB Portfolio

- Potentially best-in-class drug candidates directed against clinically validated targets with the potential to achieve high rates of functional cure following finite therapy
 - S-antigen Transport-inhibiting Oligonucleotide Polymers (STOPS™)
 - Capsid assembly modulators (CAMs)
 - Oligonucleotides (ASO, siRNA)
Antisense Oligonucleotide Platform Technology
- successfully addressing the hepatotoxicity associated with LNA ASO’s

GalNac4

2’-Modified

Wing:
High Stability,
High Binding

Gap:
RNaseH

2’-Deoxy

Wing:
High Stability,
High Binding

8-Amino-A

8-Amino-G

5-HO-C

2-Thio-T

LNA

Snp BNA (L.una)

AmNA (L.una)

Snp BNA (L.una)

4mNA (L.una)

LNA

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.
AAV-HBV Mouse Model: ASO Wing Modification with 3rd Gen BNA Improved Potency and Reduced Liver Toxicity
AAV-HBV Mouse Model: ASO Gap Nucleobase Modification Significantly Reduced Liver Toxicity while Maintaining Potency
ALG-020572 HBV ASO Derived from Aligos’ Platform

Genotypic Coverage: % Homology Among >8000 Clinical isolates

<table>
<thead>
<tr>
<th>Genotype</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALG-020572 (S)</td>
<td>98%</td>
<td>100%</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

ALG-020579, Unconjugated form of ALG-020572 inhibits HBsAg release in HepG2.2.15 cells

ALG-020579

EC$_{50}$ = 15.4 nM
CC$_{50}$ >100 nM

Adapted from Lamontagne et. al. Hepatoma Res 2016;2:163-186
AAV-HBV Mouse Model: ALG-020572 Demonstrated Significant In Vivo Activity and Dose-response

AAV-HBV: Serum HBsAg
Mean ± SEM

No ALT Elevation Observed
ALG-020572 Conjugated with Aligos GalNac4: Transportation and Processing in Human Hepatocyte Systems

- Human System: ASGPR, esterase and RNaseH1

Receptor Mediated Uptake

- Fresh PHH from CHB FRG Mouse
- HBsAg

Graph:
- ALG-020572 (S) Analog
- HBsAg EC50 = 27 nM

Receptor Mediated Uptake

- Revitalized PHH in 3-D Chip
- HBsAg

Graph:
- ALG-020572 (S) Analog
- % of HBsAg (normalized to day 9)
AAV-HBV Mouse Model: HBV ASO’s ALG-020572 (S) and ALG-020576 (X) Exhibited Additivity in Combination

Lower Dose
6X3 mg/kg Individual
6x(1.5+1.5)mg/kg Combo

Higher Dose
6X10 mg/kg Individual
6x(5+5)mg/kg Combo

No ALT Elevation Observed
ALG-020572 Exhibited Additivity when Combined with HBV siRNA

Additive in HepG2.2.15 Assay
Synergy Volume = 19.3 µM²%

ASO: unconjugated form of ALG-020572
unconjugated form of siRNA lead

ASV-HBV Mouse Model Serum HBsAg

HBV ASO

HBV siRNA

G 01: Vehicle, 5 mL/kg, SC, Q3W, Day 0 ~ 42
G 06: ALG125097, HBV siRNA 3 mg/kg, SC, Once
G 18: ALG-020572, HBV ASO 4X3 mg/kg, SC, QW
G 20: ALG-020572 HBV ASO 4X3mg/kg SC QW;
+ ALG-125097 HBV siRNA 3mg/kg SC Once

No ALT Elevation Observed

Slides are the property of the author and AASLD. Permission is required from both AASLD and the author for reuse.
ALG-020572 Analog Exhibited Strong Synergy when Combined with ALG-010133 STOPS™ Compound

Unconjugated Analog of ALG-020572 X ALG-010133
Synergy Analysis (95% confidence interval)

Strong Synergy
Synergy Volume = 291.6 µM²%
No Cellular Cytotoxicity
AAV-HBV Mouse Model: ALG-020572 Analog Showed Additivity when Combined with ETV and HBV CAM, ALG-000184 Analog

No ALT Elevation Observed
Key Takeaways

• Aligos’ ASO platform technology significantly improves the preclinical safety profile of ASO’s

• HBV ASO ALG-020572 derived from the platform demonstrates a good in vivo potency and safety profile in the AAV-HBV mouse model

• ALG-020572 or its unconjugated form demonstrated additive to synergistic activity when combined with other anti-HBV agents in vivo or in vitro
Acknowledgements

Hua Tan, Tse-I Lin, Hyunsoo Kang, Yuchun Nie, Aneerban Bhattacharya, Rajendra Pandey, Vivek K. Rajwanshi, Lawrence M. Blatt, Julian A. Symons and Leonid N. Beigelman
Thank you!